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Abstract

Introduction: Common approaches in cost-effectiveness analyses do not adjust for confounders. In nonrandomized
studies this can result in biased results. Parametric models such as regression models are commonly applied to adjust
for confounding, but there are several issues which need to be accounted for. The distribution of costs is often
skewed and there can be a considerable proportion of observations of zero costs, which cannot be well handled
using simple linear models. Associations between costs and effectiveness cannot usually be explained using observed
background information alone, which also requires special attention in parametric modeling. Furthermore, in
longitudinal panel data, missing observations are a growing problem also with nonparametric methods when
cumulative outcome measures are used.

Methods: We compare two methods, which can handle the aforementioned issues, in addition to the standard
unadjusted bootstrap techniques for assessing cost-effectiveness in the Helsinki Psychotherapy Study based on five
repeated measurements of the Global Severity Index (SCL-90-GSI) and direct costs during one year of follow-up in two
groups defined by the Defence Style Questionnaire (DSQ) at baseline. The first method models cumulative costs and
effectiveness using generalized linear models, multiple imputation and bootstrap techniques. The second method
deals with repeated measurement data directly using a hierarchical two-part logistic and gamma regression model for
costs, a hierarchical linear model for effectiveness, and Bayesian inference.

Results: The adjustment for confounders mitigated the differences of the DSQ groups. Our method, based on
Bayesian inference, revealed the unexplained association of costs and effectiveness. Furthermore, the method also
demonstrated strong heteroscedasticity in positive costs.

Conclusions: Confounders should be accounted for in cost-effectiveness analyses, if the comparison groups are not
randomized.
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Background
Cost-effectiveness analyses are often based on compar-
ing average costs with the effectiveness of the treatments,
and on bootstrap methods [1]. Bootstrap methods have
been shown to have good properties when compared with
parametric methods[2-4]. A standard application of this
approach does not adjust for possible confounding effects,
which can have a considerable influence on the results
not only in observational but also in randomised studies
[5]. In randomized controlled trials spurious differences in
the distributions of background factors can emerge due to
random variation especially with small sample sizes. This
can induce a need to adjust for confounding. Some statis-
tical methods have been developed to estimate adjusted
means using (generalized) linear models, but it seems
that these methods have seldom been applied in cost-
effectiveness analyses. In the predictive margins approach
[6,7] the mean of individual predictions based on a gener-
alized linear regressionmodel are calculated, which allows
for comparison of different scenarios by modification of
the covariate values. In Bayesian inference, predictive dis-
tributions (e.g. [8]) can be applied for calculating adjusted
means.
Longitudinal data have often been compressed by using

different cumulative measures of costs and effectiveness
outcomes (e.g. area under curve, AUC). The application
of cumulative costs can also reduce the number of obser-
vations with zero costs in repeated measurement data and
skewness, therefore, reducing the problems related to the
application of linear models.
A drawback of cumulative measures is that a missing

value in the outcome variable at a given measurement
point will result in missing values in the cumulative out-
come values of the subsequent measurement points. Mul-
tiple imputation (MI) [9] and data augmentation [10] can
be applied to deal with missing outcome values at sin-
gle measurement points, so that all of the information
for the observed outcome values can be utilised for the
cumulative outcomes.
The distribution of costs is generally skewed, with a pro-

portion of observations having zero costs and the remain-
ing portion having positive costs. Direct application of
linear regression models is not suitable for these kinds of
data, because if the model is used to predict costs, the pre-
dictions could suggest negative costs or other unrealistic
results in some scenarios. The usual method of reducing
skewness using logarithmic transformation is not sensible
when some of the study subjects have zero costs. Two-part
models [11], for example, have been proposed for solving
this problem.
Missing values may be present not only in the depen-

dent variable but also in the independent variables in
the regression model. These variables can be, for exam-
ple, skewed or categorical. Multiple imputation of missing

costs with possibly zero values is more complicated, and
two-part models can be more useful. In these cases, meth-
ods which assume a multinormal distribution for the
variables are not ideal. More suitable methods, which can
handle the aforementioned complications, can be based
on data augmentation and Bayesian inference and imple-
mented, for example, by using the OpenBUGS software
[12,13].
In the case of an observational study and non-

intervention-based comparison groups based on, for
example, a patient characteristic the cost-effectiveness
analysis demonstrates the change of the average costs
(relative to the change in the average effectiveness).
This information allows a decision-maker to plan more
cost-effective interventions, as not only different patient-
specific characteristics but also other baseline factors can
be compared in terms of the standardized average cost
differences.
The Helsinki Psychotherapy Study (HPS) is a ran-

domised clinical trial comparing three therapy treatments
[14]. In addition to comparisons of the randomized ther-
apy groups, the data set can be utilized to conduct cost-
effectiveness analyses by comparing groups defined by
nonrandomized baseline factors, in which case the ran-
domization no longer plays any part and confounding fac-
tors generally need to be adjusted for. In the present work,
we compared two groups based on the Defence Style
Questionnaire (DSQ) [15], resulting in the identification
of several potential confounders.
The aims of the study were as follows: a) We han-

dle confounding by applying predictive margins in the
frequentist inference and predictive distributions in the
Bayesian inference to produce adjusted means of cost
and effectiveness, and their differences. b) We address
missing data at single measurements of a repeated mea-
surement study by using the multiple imputation and data
augmentation techniques. c) We assess the unexplained
associations between costs and effectiveness by applying
Bayesian hierarchical models. d) We handle nonnega-
tive costs by applying a two-part model using a logistic
regression model as an indicator of zero or positive costs,
and a hierarchical gamma regression model for positive
costs to avoid unrealistic negative predictive costs, which
can be a result of an application of simple linear mod-
els. Effectiveness is analysed by using a hierarchical linear
model.

Methods
Data
The Helsinki Psychotherapy Study recruited 326 outpa-
tients, aged 20–46 years, from the Helsinki region over the
period 1994–2000 [14]. A statement describing explicitly
the ethical background to this study and an approval by
the Helsinki University Central Hospital’s ethics council
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can also be found in [14] (p. 31). Of these patients,
101 were randomly assigned to short-term psychody-
namic psychotherapy, 97 to solution-focused therapy and
128 to long-term psychodynamic psychotherapy. In the
present study, we restrict our analyses to the former two
groups containing 198 patients having received short-
term therapies. Of these patients, 7 refused to partic-
ipate after being assigned to the treatment group and
21 discontinued their treatment. The cost-effectiveness
analysis of the intervention groups has been reported
elsewhere [16].
The measurement points (MP) at which the patients

were measured were the baseline, and 3, 7, 9 and 12
months after the start of therapy. The Defence Style
Questionnaire (DSQ) was dichotomized using the median
value of 4.0 as the threshold. A total of 93 patients had
DSQ < 4, 100 had DSQ ≥ 4, and 5 had a missing DSQ
value.
The effectiveness measure was the Global Sever-

ity Index, SCL-90-GSI, psychiatric symptoms, hereafter
abbreviated as GSI [17]. The cost variable of the incre-
mental cost-effectiveness analysis was the direct costs
resulting from psychiatric health problems (DCP) dur-
ing the 12-month follow-up period. The DCP was the
sum of seven cost items in euros (€), which were: the
costs accruing from 1) the protocol-driven study of psy-
chotherapy treatments, 2) auxiliary study treatment visits,
3) other psychotherapy sessions, 4) outpatient visits to
physicians and to other health care personnel concerning
mental health problems, 5) inpatient care in psychiatric
hospitals or with psychiatric diagnosis, 6) psychotropic
medication, and 7) travel costs due to therapy visits. All
costs were included in the analysis regardless of the payer.
Effectiveness was assessed at baseline and at 3, 7, 9 and
12 months after baseline. Cost data based on information
obtained from patients by questionnaires covered periods
0–7 months and 8–12 months whereas cost data based on
patient level registers covered periods 0–3, 4–7, 8–9 and
10–12 months. Table 1 presents descriptive statistics of
the outcome variables.
The DSQ was associated with several baseline variables,

which were also predictors of the effectiveness measure
or the costs. The potential confounders in modelling both
effectiveness and costs were gender, ‘psychiatric diagnos-
tic category on Axis I’ (DSM IV) [18], ‘IIP-C, total score’
[19], ‘SOC, Sense of Coherence scale’ [20] and ‘SAS-SR,
work subscale’ [21] (Table 2). These potential confounders
were chosen based both on a priori judgement on psy-
chology and on Kendall’s τ with DSQ (p-value smaller
than 0.1), and with the AUC or with DCP (p-value smaller
than 0.2) (data not shown). Also, we have applied baseline
adjustment of the effectiveness by adding the baseline GSI
value in the effectiveness model [22]. Due to randomiza-
tion, there was no association between therapy group (the

intervention) and DSQ, thus the therapy group was not
included in the model.

Models
The basic bootstrap method, which did not adjust
for confounders, was compared with two model-based
approaches, which adjust for confounders by using regres-
sion models. The first model-based method was based
on cumulative measures of cost and effectiveness as out-
comes, multiple imputation, bootstrap, generalized linear
models and frequentist inference. The other method was
based on hierarchical regression modelling of GSI and
DCP at each MP using the Bayesian inference. These lat-
ter methods are described below, and referred to as the
frequentist model and the Bayesian model although the
models were not restricted to any particular inferential
paradigm.

Multiple imputation and bootstrapmethods
Multiple imputation [9] of the missing data was per-
formed using procedure MI of the Sas System 9.2 [23].
The numerical Markov chain Monte Carlo (MCMC)
method of this procedure was chosen because the miss-
ing data pattern was not monotonic. TheMCMCmethod,
in which the variables of the imputation model were
assumed to be multinormally distributed, was applied
separately for the DSQ groups. Effectiveness GSI was
imputed for the repeated measurement data, and after the
imputation the AUC was constructed from the imputed
values using equation (4) given in the Appendix. The DCP
were log-transformed in the MI. Auxiliary variables were
not included in the imputation model due to convergence
problems of the EM algorithm, which was used to esti-
mate the initial values of imputation model parameters, of
procedure MI.
In order to calculate the confidence intervals, the boot-

strap method [1] was applied with 500 bootstrap samples.
Multiple imputation was performed as a single imputation
separately for each bootstrap sample [24].

Models for cumulative outcomes with frequentist inference
The observed values of the cumulative costs variable
were all positive in this case, and a gamma regression
model was therefore applied as the analysis model for the
cumulative costs. The AUC was modelled using a linear
regression model.

Bayesianmodel for repeatedmeasurement data
The Bayesian method [8] for costs was based on a two-
part hierarchical model because there were a considerable
number of zero costs in the MP-specific cost data. The
costs of patient i atMP k were factored as a product of two
terms: Cik = CZ

ikC
P
ik . The first term in the product had a

value of one if the costs were positive between MP’s k − 1
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Table 1 Descriptive statistics of outcomes

DSQ, immature defence styles

DSQ< 4 (N=93) DSQ≥ 4 (N=100)

Variable Month Meana SDb NZc NMd Meana SDb NZc NMd

GSI 3 0.85 0.51 7 1.19 0.55 11

GSI 7 0.70 0.48 14 1.08 0.60 19

GSI 9 0.64 0.45 10 1.02 0.63 22

GSI 12 0.65 0.51 13 1.01 0.62 21

AUC of Eff 3–12 0.51 0.31 18 0.8 0.39 30

Costs 0–3 735 251 0 9 832 313 0 15

Costs 3–7 689 309 1 9 802 627 1 15

Costs 7–9 185 259 38 9 234 309 31 19

Costs 9–12 186 345 41 9 238 473 37 20

Cumul. costs 0–12 1818 809 0 12 2131 1323 0 21

Descriptive statistics of the effectiveness and cost outcomes.
aObserved means.
bStandard deviations.
cNumber of observations with zero costs.
dNumber of observations with missing values.

and k, and zero if no costs had been incurred. A logistic
regression model for the binary outcome CZ

ik was defined
as

P

{
CZ
ik = 1

∣∣∣ βZ
k , Xik

}
= 1

1 + exp{−Xikβ
Z
k } , (1)

Table 2 Descriptive statistics of confounders

DSQ, immature defence styles

< 4(N = 93) ≥ 4(N = 100)

Confounder Mean SD Mean SD

Baseline GSI 1.05 0.44 1.49 0.49

Gender

• Man 0.18 0.39 0.33 0.47

• Woman 0.82 0.39 0.67 0.47

DSM-IV, psychiatric
diagnostic category
on Axis I

• Mood disorder only 0.44 0.5 0.58 0.50

• Anxiety disorder only 0.23 0.42 0.14 0.35

• Comorbid mood
and anxiety disorder

0.33 0.47 0.28 0.45

• Other disorder 0.0 0.0 0.0 0.0

• No diagnosis 0.0 0.0 0.0 0.0

IIP-C, total score 7.46 2.92 10.17 2.63

SOC, Sense of
Coherence scale

12.33 1.91 10.25 1.63

SAS-SR, work subscale 1.97 0.49 2.33 0.56

Observed means or prevalences, and standard deviations (SD) of the
confounders.

where Xik denoted the row vector of the intercept, the
confounders, MP k and the binary DSQ group indicator
DSQi. βZ

k were the corresponding regression coefficients,
and exp{βZ

k } were the corresponding odds ratios (OR).
The second term of the positive costs CP

ik was defined
in a similar fashion. Because the distribution of the pos-
itive costs was skewed, the Gamma distribution was
applied.

CP
ik ∼ Gamma

(
exp{Xikβ

P
k + UP

i }τDSQik , τDSQik
)
. (2)

Random effect UP
i was individual. The regression coef-

ficients represented the proportional changes in the
expected value of the positive outcomes, i.e. a one-unit
increase in the value of a covariate corresponded to a
exp{β}-fold increase in the expected value. The possible
heteroscedasticity was accounted for by allowing disper-
sion (inverse of variance-to-mean ratio) parameter τDSQik
vary over the DSQ groups and the MPs. Note that if
τDSQik = 1 then the expected value of the positive costs
was equal to the variance, and if τDSQik > 1 then the
variance was smaller.
Effectiveness Eik was modelled by using a linear, hierar-

chical model:

Eik = Xikβ
E
k + UE

i1 + UE
i2t + εEik , (3)

where t is the follow-up time at MP k. There was assumed
to be an individual linear trend, which was modelled by
the random effects part UE

i1 + UE
i2t.

The prior distributions of the regression coefficients
β ·
k and the residual error terms εEik were N(0, 100)
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and N(0, σ 2
E,DSQik

), respectively. The variance parame-
ters σ 2

E,·,· and the dispersion parameters τ·,· were dis-
tributed as InverseGamma(3, 1) and Gamma(3, 1) a pri-
ori, respectively.
The possible associations betweenmeasurement points,

and the costs and the effects were accounted for
using hierarchical models. The prior distribution for the
three random effects were Ui := (Ui1, Ui2, Ui3)T :=
(UE

i1, U
E
i2, UP

i )T ∼ N(0, �U) and for the corresponding
covariance matrix �U = (σij)i,j ∼ InvW10(I3), where
InvW10 was an abbreviation for the inverse Wishart dis-
tribution with 10 degrees of freedom and I3 the 3 × 3
identity matrix. Thus the correlation between the ran-
dom effects was assumed to be zero a priori, and the
costs and effectiveness were therefore assumed to be
independent given the observed background information
and the random effects. The correlation coefficients of
the distribution of the random effects were defined as
ρij := σij/

√
σiiσjj.

The details of the model specifications, estimation, data
augmentation and the model assessment are described
below.

Mathematical description of the model
Notations
Let i ∈ {1, 2, . . . , n} =: I index the n = 198 subjects
and k = 1, 2, . . . ,K := 5 the K intervention points where
the measurements were made. Let time t(1) ≡ 0 denote
the baseline and t(K) = 12 the duration of the follow-up
in months. As there was some individual variation in the
times when the actual measurements were made, let t∗i (k)
denote the actual kth measurement time when the out-
comes Cik (DCP during (t∗i (k − 1), t∗i (k)]) and Eik (GSI) of
subject i were recorded.
The cumulative cost variable was defined as the sum

CCum
i := ∑K

k=2 Cik . The effectiveness AUC was defined
as:

EAUCi := 1
t(K)

K∑
k=2

Ei,k−1 + Eik
2

(
t(k) − t(k − 1)

)
. (4)

The incremental cost-effectiveness ratio was defined as

ICER := C̄Cum
DSQ < 4 − C̄Cum

DSQ ≥ 4

ĒAUCDSQ < 4 − ĒAUCDSQ ≥ 4
, (5)

where C̄Cum· and ĒAUC· are the DSQ group specific cumu-
lative cost and effectiveness AUC means, respectively.

Cumulative outcomes
The model adjustment for controlling confounding was
based on the ideas of Lee [6]. The individual predictions,
which were based on the parameter values, the covariate

values and the expected value based on the gamma regres-
sion model, were:

E

[
CCum
i

∣∣∣ βC, XC
i

]
:= exp{XC

i βC} ∀i, (6)

where XC
i denotes the row vector of the covariates and

βC the corresponding column vector of the regression
coefficients.
The analysis model for the effectiveness contains the

group DSQi and the confounders. The linear regression
model was applied, and the individual predictions were:

E

[
EAUCi

∣∣∣ βE, σ 2, XE
i

]
:= XE

i βE ∀i. (7)

The predicted margin [7] was the average of the predic-
tions (6):

PMC(xDSQ) := 1
n

n∑
i=1

E

[
CCum
i

∣∣∣ βC, σ 2, XC,∗
i

]
. (8)

In (8) XC,∗
i was a modified version of the original covari-

ate values. In this modification group variable DSQi was
set to value xDSQ ∈ {DSQ < 4, DSQ ≥ 4} for all patients
i and the values of the other covariates remained at their
original values. The adjusted difference of groups was
difference PMC(DSQ < 4)−PMC(DSQ ≥ 4). The predic-
tive margins PME(xDSQ) and the difference between the
groups PME(DSQ < 4) − PME(DSQ ≥ 4) were defined
as in (8), but by using the individual predictions defined
in (7). The adjusted ICER was calculated by using the
predictive margins PME(·) and PMC(·):

ICERPM := PMC(DSQ < 4) − PMC(DSQ ≥ 4)
PME(DSQ < 4) − PME(DSQ ≥ 4)

. (9)

Repeatedmeasurements
In the Bayesian model, the posterior distribution was pro-
portional to the product of the likelihood terms based on
equations (1), (2) and (3), the joint density of the ran-
dom effects and the joint density of all model parameters
(denoted here by θ ):

p ( θ | data) ∝⎡
⎣∏

i,k
P

{
CZ
ik

∣∣∣ βZ
k , X

Z
ik

}
p

(
CP
ik

∣∣∣ XP
ik , βP

k , U
P
i , τDSQik

)⎤
⎦

×
⎡
⎣∏

i,k
p

(
Eik | XE

ik , βE
k , U

E
i , σ 2

E,DSQik

)⎤
⎦

×
[∏

i
p (Ui | θ)

]
× p{θ}.

(10)
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The predictive distribution of the outcomes for a set I of
hypothetical subjects i∗ was defined as

[
(CZ

i∗k , C
P
i∗k , Ei∗k)i∗∈I | data

]
=

∫
p ( θ | data)

∏
i∗

p (Ui∗ | θ)

×
∏
k
P

{
CZ
i∗k

∣∣∣ βZ
k , X

Z
i∗k

}
p

(
CP
i∗k

∣∣∣ XP
i∗k , βP

k , U
P
i∗ , τDSQi∗ k

)

× p
(
Ei∗k | XE

i∗k , βE
k , U

E
i∗ , σ 2

E,DSQi∗ k

)
dUi∗ dθ .

(11)

Predictive distributions (11) were applied to calculate
posterior predictive expectations and quantile points of
functionals of

(CZ
i∗k , C

P
i∗k , Ei∗k)i∗∈I, k ,

such as PMC(xDSQ) in (8) or the ICERPM in (9).

Estimation
The frequentist regression analyses were performed using
the SAS System 9.2 [23] procedures Genmod and Mixed
for cumulative costs and AUC, respectively.
The Bayesian analyses were conducted using the Open-

Bugs software [13], which applies MCMC methods. The
data management and the predictive distributions were
handled using the R software [25].

Data augmentation to handlemissing data
Predictive distributions (11) were also applied in the data
augmentation procedures to handle missing outcome val-
ues. The corresponding predictive distribution for the
missing baseline covariate value Xij, which belongs to at
least one of the covariate vectors XZ

ik , X
P
ik or X

E
ik , was[

Xij|data
] ∝∫

p ( θ | data)

× p
(
Xij

∣∣ θ
) ∫

p (Ui | θ)
∏
k
P

{
CZ
ik

∣∣∣βZ
k , X

Z
ik

}

× p
(
CP
ik

∣∣∣ XP
ik , βP

k , U
P
i , τDSQik

)
× p

(
Eik | XE

ik , βE
k , U

E
i , σ

2
E,DSQik

)
dUidθ .

(12)

The prior distribution for the discretized baseline DSQ
was defined as Bernoulli(pDSQ), where the hyperprior for
pDSQ was chosen to be Uniform(0, 1). The other base-
line covariates Xij having missing values were continuous,
and they were assignedN(μj, 1/τj) priors with hyperpriors
μj ∼ N(0, 1000) and τj ∼ Gamma(2, 1). As the number
of missing values in these covariates was small, we chose
not to elaborate the prior distributions further.

Convergence checks of MCMC and assessment ofmodel
assumptions
Two parallel chains were simulated with 60,000 iterations
in addition to 10,000 iterations of burn-in in both chains.
The chains were thinned by factor 15 resulting in 4,000
sampled values for both chains. Autocorrelations van-
ished quickly, which suggests good convergence (data not
shown).
The Bayesianmodel was assessed using the Q-Q plots of

standardised predictive errors (SPE). A total of 40 subjects
denoted by set I∗ were excluded from the data, and the
predictions for these 40 subjects were calculated based on
their baseline information and all observed information of
the remaining subjects in I ∩I∗C. The SPE was defined as

E

[
Ei∗k − EObs

i∗k
σE,ε

∣∣∣data {
I ∩ I∗C}]

=
∫

· · ·
∫ Ei∗k − EObs

i∗k
σE,ε

p
(
Ei∗k | XE

i∗k , βE
k , U

E
i∗ , σ 2

E,ε,DSQi∗

)
× p (Ui∗ | θ) p

(
θ | data {I ∩ I∗C}

)
dEi∗k dUi∗ dθ ∀i∗ ∈ I∗

(13)

where EObs
i∗k denotes the observed value of effectiveness

GSI. A similar approach for the positive costs CP
ik was

applied.

Results
The adjusted absolute differences of the cumulative costs
(-161 and -166 based on the frequentist and Bayesian
methods, respectively) appeared to be smaller than the
unadjusted difference of -309 based on the bootstrap
method (Table 3). The unadjusted difference was weakly
significantly different from zero (P-value 0.094) whereas
the corresponding adjusted difference based on the fre-
quentist model was not significant (P-value 0.432). The
Bayesian method, which modelled the measurement
points separately, appeared to produce slightly lower pre-
dictive cumulative cost means than the frequentist predic-
tive margins method. The estimates of the difference were
close to each others.
The AUC differences for effectiveness were highly

significant for the unadjusted bootstrapped difference
(-0.38), but the adjusted mean -0.04 based on predictive
margins was not significant and close to zero (P-values
0.000 and 0.566, respectively), whereas the predictive
mean difference based on the Bayesian inference pro-
duced a much smaller difference of -0.03 with credible
interval (CrI) (-0.27, 0.20) (Table 3).
The unadjusted ICER estimate was slightly higher than

the adjusted estimate (Table 3). The standard errors, how-
ever, were large. The unadjusted ICER was weakly sig-
nificant (P-value 0.098), but the adjusted ICER was not
significant (P-value 0.772). The adjusted ICER and the
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Table 3 The observed andmodel-based estimates

Cumulative Cost . . . . . . . . . . . Effectiveness (AUC) . . . . . . . . . . .

DSQ< 4 DSQ≥ 4 � DSQ < 4 DSQ ≥ 4 � ICER

Observeda mean 1818 2131 -313 0.68 1.06 -0.38 830

Observed SD 809 1323 NAe 0.41 0.52 NAe NAe

Observed CI (1639, 1997) (1835, 2428) (-657, 31) (0.59, 0.78) (0.94, 1.18) (-0.53, -0.22) NAe

Observed p-valuef NAe NAe 0.074 NAe NAe 0.00 NAe

Bootstrappedb mean 1838 2147 -309 0.72 1.09 -0.37 816

Bootstrapped SE 99 160 190 0.05 0.06 0.08 498

Bootstrapped CI (1670, 2046) (1855, 2469) (-665, 47) (0.61, 0.81) (0.98, 1.2) (-0.52, -0.23) (-153, 1820)

Bootstrapped p-valuef NAe NAe 0.094 NAe NAe 0.00 0.098

Adjustedc mean 1912 2073 -161 0.89 0.94 -0.04 -3569

Adjusted SE 126 152 208 0.05 0.06 0.08 102341

Adjusted CI (1678, 2181) (1799, 2362) (-582, 224) (0.79, 0.99) (0.82, 1.04) (-0.19, 0.1) (-30215, 35896)

Adjusted p-valuef NAe NAe 0.432 NAe NAe 0.566 0.772

Predictived mean 1862 2028 -166 0.9 0.93 -0.03 -11777

Predictive SD 111 126 170 0.09 0.09 0.12 933871

Predictive CrI (1656, 2090) (1795, 2292) (-501, 171) (0.71, 1.08) (0.75, 1.11) (-0.26, 0.2) (-26435, 23285)

Predictive p-valueg NAe NAe NAe NAe NAe NAe NAe

The observed and model-based estimates of cumulative costs and effectiveness measured by the area under the curve (AUC).
aThe observed group means, and their standard deviations (SD) and group differences are not adjusted for confounders. 95% confidence intervals (CI) and tests were
based on the t-test.
bThe bootstrapped groupmeans and differences, and their standard errors (SE) are based onmultiply imputed and bootstrapped data but unadjusted for confounding.
cThe adjusted group means and their differences are based on regression modelling. The rows marked adjusted mean and SE are based on predictive margins,
frequentist inference, bootstrap and multiple imputation.
dThe rows denoted by predictive means and SD are based on the hierarchical Bayesian model, posterior predictive group means and their differences, and the
corresponding SDs and 95% credible intervals (CrI).
eNA corresponds to not applicable results.
fP-values correspond to the null hypothesis “no difference between groups” or “ICER equals zero”.
gP-values are generally not sensible in Bayesian inference, thus they are not reported.

posterior expectation of the ICER were not applicable,
because the denominator of the ICER (the effectiveness
difference) was near zero, in which case the ICER was
undefined [2].
The cost–effectiveness plane shows that in the group

where DSQ ≥ 4 both the costs and the symptoms were on
a higher level than in the group where DSQ< 4 (Figure 1).
Due to the large number of parameters in the regres-

sion models defined above, which were merely a technical
utility as the objective was to adjust the average costs and
effectiveness for possible confounding, we focus on a lim-
ited number of parameters of the Bayesian model in the
following.
There were significant correlations between aver-

age levels of individual costs and effectiveness over
time (posterior expectation E[ ρ1,3|data]= 0.32 and
CrI (0.00,0.57)), and the individual slope of effective-
ness (E[ ρ1,2|data]= −0.17 CrI (-0.33, -0.00)), which
cannot be explained by the background informa-
tion included in the regression models. The correla-
tions between the intercept of positive costs, and the

slope of effectiveness, however, were practically zero
(E[ ρ1,3|data]= −0.03).
The dispersions of the positive costs showed consid-

erable variation over the measurement points, but the
residual variances of effectiveness were close to each other
(Table 4). During the first measurement interval the pos-
itive costs varied relatively little (E[ τ·,2 |data] were large)
because the majority of patients took the study treat-
ments, each of which lasted approximately six months and
was covered by the first two measurement intervals. Some
patients took auxiliary therapies or other psychiatric treat-
ments both during and after the study therapies, which
resulted in higher costs, whereas other patients took no
auxiliary treatments, which resulted in lower costs. This
resulted in greater individual variation during the last
measurement interval (E[ τ·,5 |data] were small).
The posterior predictive checks based on the Q-Q plots

showed that the model for costs fitted well for intervals 0
to 3 months and 3 to 7 months, but after that the predic-
tions were too low. The model for effectiveness did not fit
well at the last two measurement points (Figures 2 and 3).
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Figure 1 The cost-effectiveness plane. The Bayesian method was
applied to calculate the posterior predictive differences of
effectiveness means ĒAUCDSQ < 4 − ĒAUCDSQ ≥ 4 and cost means

C̄CumDSQ < 4 − C̄CumDSQ ≥ 4.

Discussion
This paper compared the standard bootstrap-based
method in a cost-effectiveness analysis with two model-
based methods based on the frequentist and the Bayesian
inferences. The skewed, non-negative distribution of cost
variables was analysed using the gamma regression and
the two-part models, and model adjustment for potential
confounding was performed using the predictive margins

Table 4 Variance parameter estimates

DSQ< 4 DSQ≥ 4

θ a
E[ θ |d] b 95% CIb E[ θ |d] b 95% CIb

σ 2
E,·,1 0.10 0.07 0.14 0.13 0.09 0.19

σ 2
E,·,2 0.09 0.06 0.12 0.12 0.09 0.18

σ 2
E,·,3 0.07 0.05 0.11 0.09 0.06 0.13

σ 2
E,·,4 0.10 0.06 0.16 0.17 0.1 0.26

τP,·,1 12.15 8.28 17.19 8.09 5.55 11.37

τP,·,2 6.07 4.06 8.51 3.79 2.61 5.3

τP,·,3 4.12 2.57 6.08 4.67 3.01 6.82

τP,·,4 2.07 1.21 3.13 1.95 1.16 2.91

The parameters controlling the variance of effectiveness and the dispersion of
the positive costs in the Bayesian model.
aParameters σ 2

E,·,· control the variance of the effectiveness measure, and
parameters τ·,· (inverse of variance-to-mean ratio) the dispersion of the positive
costs in the Bayesian model. Parameter θ is a generic notation representing one
of the parameters σ 2

E,·,· or τ·,· .
bThe point estimates are posterior expectations E[ θ | d] and also 95% credible
intervals (CI) are presented

and predictive distributions in the frequentist and the
Bayesian inferences, respectively.
The benefit of using the predictive margins method or

the predictive distributions of the Bayesian inference to
calculate the adjusted averages of costs and effectiveness
is that there is that also other link functions than the
identity function can be used in regression modeling. For
example, Nixon and Thompson [5] applied identity link
functions both for gamma distribution of the costs and for
the normal distribution of the effectiveness. The average
of the covariates over all individuals multiplied by the cor-
responding regression coefficients were restricted to zero
in order to interpret the intercept terms as the group aver-
ages. There is no need to make such restrictions or to
stick with the identity link function when using predictive
margins or Bayesian predictive distributions. Other link
functions, which are commonly used in generalized linear
models, can be applied with these methods as well thus
avoiding the possibility of negative linear predictors (and
predictive values) in case of the gamma distribution.
Both methods based on the regression models could

have been applied in the case of repeated measurements
by using either frequentist or Bayesian inference. How-
ever, the prevalence of zero costs during the first two
follow-up periods was very low, thus an application of
a logistic regression model and frequentist inference in
the two-part model was not plausible. Furthermore, appli-
cation of a joint hierarchical model would have been
difficult because effectiveness and positive costs were
modelled using different families of distributions, nor-
mal and gamma distributions, respectively. The Bayesian
method avoided the numerical instabilities by using infor-
mative prior distributions for the regression coefficients
and the missing data values were augmented during the
MCMC simulation in a straightforward manner.
Bayesian model averaging [26,27] has been proposed to

handle the skewness of cost variables or for the selection
of important predictors, respectively, but simultaneous
handling of skewness, heteroscedasticity and adjustment
for confounding factors can be challenging. We modelled
the heteroscedastic residual variance of the cost variables
in the case of the repeated measurement data, which
allows the model to adapt to the distribution of the costs.
The posterior predictive checks suggested that the model
fit was good.
The predictive margins approach for the cumulative

outcomes was flexible, and the procedure described in
this paper can be extended to the case of zero costs and
two-part models.
Olsen and Schafer [28] introduced a model with ran-

dom effects for both parts of the two-part model for
costs. They reported that the random effects were usually
correlated. In our study, however, the sample size was con-
siderably smaller and the proportion of zero costs was very
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Figure 2 Q-Q plots of effectiveness outcome GSI. The four measurement points at 3, 7, 9 and 12 months were used.

low during the first seven months of follow-up. There-
fore, application of separate random effects for the zero
costs (and possible positive correlation with the random
effect(s) of the positive costs) was suppressed.
Potential extensions of the model include, for example,

using a higher order random effects model for positive
costs and adding a random effect to the logistic model
of zero costs. These extensions would, however, require
more measurements or more individuals. Another exten-
sion of the model would be to handle the skewed distri-
bution of the effectiveness outcome, especially at the later
stages of the follow-up by using, for example, the skewed
normal distribution [29].
The patient groups were not defined using (random-

ized) intervention groups, which is the case in most

cost-effectiveness analyses, but with the DSQ, which com-
plicates the interpretation of the ICER statistic. The DSQ
is a rather stable characteristic of a patient, which can-
not be altered by a researcher, whereas interventions in
general can be altered. The interpretation of the ICER
statistic is the change in average costs per one unit in
the change of the average effectiveness measured in terms
of the AUC. It is also important to bear in mind that
in this work large values of the effectiveness outcome
GSI correspond to more severe symptoms (less bene-
fits) whereas in commonly used effectiveness outcomes
such as the quality adjusted life years (QALY) large val-
ues correspond to greater benefits. Therefore the usual
interpretation of the quadrants of the cost-effectiveness
plane[30] is reversed with respect to the vertical axis. In
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Figure 3 Q-Q plots of positive costs. The measurement intervals were 0–3, 3–7, 7–9 and 9–12 months. The measurements with zero costs were
excluded.
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this case the unadjusted ICER estimates were positive
indicating that in the group DSQ¡4 the effectiveness was
better and the costs were lower.
Our results allow a decision-maker to assess the impor-

tance of patient characteristics such as the DSQ in this
study. If a patient in the group DSQ≥4 become similar
to a patient in the group DSQ¡4, the cost would decrease
by 816 euros (the bootstrapped point estimate) per one
unit decrease in the AUC based on the GSI on aver-
age. However, the adjusted estimates indicate that not
only the effectiveness difference but also the cost differ-
ence vanished thus it is not reasonable to present such
a standardized estimate of the change in costs as the
ICER.
Limitations of the proposed methods are mainly related

to the various modelling assumptions, but there are
few alternatives to parametric models in order to adjust
for confounders. For example, the effectiveness measure
was nonnegative, but the model was based on normal-
ity assumptions, thus predictive effectiveness values can
be negative. The poor performance of the effectiveness
model was likely to be due to the skewed distribution,
which was not accounted for using a model based on
normal distribution. SCL-90-GSI can have only positive
values, and the reduction in symptoms caused a con-
siderable proportion of observations to lie close to zero.
Linearity assumptions or possible interactions were not
tested, but could be done in future work.

Conclusion
Our paper demonstrates how to combine several meth-
ods for performing cost-effectiveness analyses in obser-
vational studies, which are often subject to effects of
confounding and missing data. Our results based on
regression modelling confirmed that there was a need to
adjust for the confounders in this study, thus the stan-
dard unadjusted methods based on the bootstrap method,
were not adequate. Unadjusted methods showed signifi-
cant differences between the groups, but the adjustment
for confounders showed no the significant differences
thus yielding different conclusions. Not all associations
between the costs and effectiveness could not, however,
be explained by the observed confounders only, thus the
hierarchical model showed clear non-zero correlations
between the random effects. The OpenBUGS code is
available from the corresponding author upon request.
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