From: Modelling epidemiological and economics processes – the case of cervical cancer
Author | Year | Source | Number of studies reviewed | Models (acc. to paper) |
---|---|---|---|---|
Marra et al | 2009 | [68] | 22 | 10 Markov, 1 hybrid, 11 dynamic |
Jit et al | 2011 | [95] | 6 | 1 Stochastic microsimulation, 1 State transition population model, 2 Markov models, 1 Transmission dynamic model, 1 Semi-Markov model |
Fesenfeld et al | 2013 | [63] | 25 | 16 static, 2 dynamic, 7 hybrid |
Mendes et al | 2015 | [69] | 153 | 149 static, 4 dynamic |
Mezei et al | 2017 | [96] | 19 | 11 microsimulation, 5 Markov, 2 semi-Markov, 1 decision tree |
Viscondi et al | 2018 | [97] | 38 | All Markov; two studies justified the choice of model type |
Mahumud et al | 2020 | [66] | 12 | 9 dynamic, 2 static, 1 Markov |
Malone et al | 2020 | [67] | 15 | 5 Microsimulation, 3 decision tree, 3 Markov, 4 not reported |
Linertová et al | 2021 | [65] | 9 | 5 dynamic transmission, 3 Markov, 1 other |
Shi et al | 2021 | [71] | 14 | 4 cohort dynamic, 10 static (9 cohort and 1 individual) |
Casas et al | 2022 | [98] | 15 | 7 Markov decision model, 5 decision tree model, 2 microsimulation model, 1 semi-Markov simulation model |
Wang, Sawleshwarkar et al | 2024 | [61] | 40 | 11 primary system dynamics, 16 adapted system dynamics, 1 primary network-based model, 4 calibrations; 3 primary agent-based models, 5 calibrations |