From: An analysis of factors influencing technical efficiency of health expenditures in China
Province | \(\overline{E}_{k}^{{}}\) | \({\overline{E}}_{k}^{1}\) | \(\overline{E}_{k}^{2}\) | \(\alpha_{{{\text{Government}}}}^{1}\) | \(\alpha_{{{\text{Social}}}}^{1}\) |
---|---|---|---|---|---|
Tibet | 1.000 | 1.000 | 1.000 | 0.745 | 0.550 |
Jiangxi | 1.000 | 1.000 | 1.000 | 0.496 | 0.442 |
Guizhou | 1.000 | 1.000 | 1.000 | 0.577 | 0.447 |
Ningxia | 1.000 | 1.000 | 1.000 | 0.636 | 0.683 |
Henan | 1.000 | 1.000 | 1.000 | 0.677 | 0.400 |
Hunan | 1.000 | 1.000 | 1.000 | 0.420 | 0.789 |
Shandong | 0.991 | 0.990 | 0.992 | 0.350 | 0.799 |
Hebei | 0.978 | 0.969 | 0.981 | 0.350 | 0.539 |
Qinghai | 0.974 | 0.975 | 0.973 | 0.607 | 0.366 |
Sichuan | 0.970 | 0.909 | 0.996 | 0.350 | 0.822 |
Liaoning | 0.968 | 1.000 | 0.957 | 0.350 | 0.999 |
Zhejiang | 0.961 | 0.853 | 1.000 | 0.350 | 0.350 |
Guangxi | 0.949 | 0.844 | 0.990 | 0.359 | 0.350 |
Hubei | 0.948 | 0.853 | 1.000 | 0.451 | 0.557 |
Yunnan | 0.928 | 0.857 | 0.963 | 0.430 | 0.454 |
Chongqing | 0.915 | 0.831 | 1.000 | 0.709 | 1.000 |
Jiangsu | 0.902 | 0.797 | 0.940 | 0.350 | 0.996 |
Gansu | 0.898 | 0.889 | 0.905 | 0.845 | 0.521 |
Hainan | 0.893 | 0.882 | 0.899 | 0.510 | 0.350 |
Heilongjiang | 0.888 | 0.931 | 0.864 | 0.350 | 1.000 |
Shaanxi | 0.874 | 0.863 | 0.884 | 0.597 | 1.000 |
Anhui | 0.870 | 0.792 | 0.924 | 0.471 | 0.829 |
Sinkiang | 0.849 | 0.759 | 0.959 | 0.774 | 1.000 |
Shanxi | 0.824 | 1.000 | 0.639 | 0.924 | 1.000 |
Guangdong | 0.818 | 0.669 | 0.950 | 0.883 | 0.350 |
Fujian | 0.793 | 0.724 | 0.850 | 0.695 | 0.496 |
Jilin | 0.776 | 0.808 | 0.735 | 0.907 | 1.000 |
Inner Mongolia | 0.772 | 0.834 | 0.687 | 1.000 | 1.000 |
Tianjin | 0.754 | 0.635 | 0.926 | 0.798 | 1.000 |
Shanghai | 0.662 | 0.477 | 0.951 | 0.798 | 0.979 |
Beijing | 0.610 | 0.575 | 0.665 | 0.863 | 1.000 |
Mean | 0.896 | 0.862 | 0.924 | 0.601 | 0.712 |