From: An analysis of factors influencing technical efficiency of health expenditures in China
Province | \(\overline{E}_{k}^{{}}\) | \({\overline{E}}_{k}^{1}\) | \(\overline{E}_{k}^{2}\) | \(\alpha_{{{\text{Government}}}}^{1}\) | \(\alpha_{{{\text{Social}}}}^{1}\) |
---|---|---|---|---|---|
Hunan | 1.000 | 1.000 | 1.000 | 0.541 | 0.568 |
Jiangxi | 1.000 | 1.000 | 1.000 | 0.544 | 0.502 |
Tibet | 1.000 | 1.000 | 1.000 | 0.789 | 0.564 |
Henan | 1.000 | 1.000 | 1.000 | 0.821 | 0.447 |
Ningxia | 1.000 | 0.999 | 1.000 | 0.350 | 0.406 |
Sichuan | 0.988 | 0.956 | 1.000 | 0.350 | 0.350 |
Hebei | 0.981 | 0.950 | 1.000 | 0.581 | 1.000 |
Guangxi | 0.959 | 0.966 | 0.954 | 0.391 | 1.000 |
Shandong | 0.932 | 0.971 | 0.894 | 0.890 | 0.988 |
Chongqing | 0.899 | 0.794 | 0.998 | 0.677 | 1.000 |
Hubei | 0.895 | 0.735 | 0.989 | 0.350 | 1.000 |
Hainan | 0.872 | 0.842 | 0.887 | 0.350 | 0.368 |
Qinghai | 0.871 | 0.801 | 0.947 | 0.592 | 0.350 |
Guizhou | 0.830 | 0.941 | 0.701 | 1.000 | 1.000 |
Yunnan | 0.800 | 0.776 | 0.829 | 1.000 | 0.823 |
Gansu | 0.796 | 0.774 | 0.815 | 1.000 | 0.470 |
Anhui | 0.779 | 0.711 | 0.850 | 0.631 | 1.000 |
Jiangsu | 0.759 | 0.627 | 0.917 | 0.796 | 1.000 |
Sinkiang | 0.750 | 0.701 | 0.803 | 0.684 | 1.000 |
Shaanxi | 0.726 | 0.793 | 0.656 | 0.803 | 0.895 |
Zhejiang | 0.719 | 0.438 | 1.000 | 0.621 | 1.000 |
Liaoning | 0.710 | 0.715 | 0.704 | 0.803 | 1.000 |
Shanxi | 0.697 | 0.901 | 0.474 | 1.000 | 0.350 |
Fujian | 0.692 | 0.652 | 0.740 | 0.796 | 0.999 |
Heilongjiang | 0.677 | 0.690 | 0.653 | 1.000 | 1.000 |
Jilin | 0.588 | 0.612 | 0.549 | 1.000 | 0.350 |
Inner Mongolia | 0.575 | 0.597 | 0.530 | 1.000 | 0.350 |
Guangdong | 0.548 | 0.377 | 0.907 | 0.890 | 0.950 |
Tianjin | 0.478 | 0.414 | 0.553 | 0.571 | 0.905 |
Mean | 0.811 | 0.784 | 0.840 | 0.718 | 0.746 |